2010年以来,随着技术与产业链的逐步成熟,以及互联网对于经济与社会的深度渗透,网络带宽和传输管道承受巨大的规划压力,100G干线传输得到广泛认可,快速得以规模部署,先进运营商争相将核心与干线网络从10G/40G升级到100G。目前全球已经有数百张100G的商用传输网络部署(ZTE全球部署150余张100G网络),并仍然在持续升级中。
鉴于干线网络的带宽仍然以不低于30%的复合增长率吞噬干线带宽,先进运营商、标准组织,研究机构以及设备供应商等旋即将目光聚焦在下一代光传输网络的技术、标准等研究工作中,这就是200G/400G/1T等超100G光传送网络。
\
超100G采用的技术
新一代传输网络的研究,其压力来自市场对带宽的需求,其实也是提高频谱传输效率,降低每比特传输成本的不懈诉求,以应对运营商不断下滑的宽带投资收益。在目前商用的100G传输主流系统中都采用的相干接收的单载波极化复用和QPSK调制技术,其频谱传输效率为4bits/s/Hz,辅以硬判决或者软判决来提高OSNR容限。
为了达到更高的传输带宽,可采用以下主要技术。
第一,采用高阶调制方式,以提升每符号比特。在单载波调制方面,采用高阶在一定的频谱带宽上能够实现更高的传输效率。相对于QPSK,16QAM调制的每符号比特数提升一倍,从而提升传输效率和容量。在超100G传输领域,高阶调制格式的运用是业界普遍采用的重要手段,同时高阶调制方式的采用,也对接收侧OSNR有更高的要求,限制了传输距离。中兴通讯在QPSK, 8QAM、16QAM、64QAM等调制格式上进行了不断地实践,积累了诸多经验和成果,其基于QPSK的400G传输系统,传输距离可达3000多公里,适用于远距离传输;而在16QAM调制方式下,其400G系统传输距离超过1200公里,更适合城域传输系统。
第二,采用更高的信号波特率。超100G的另一个重要研究方向是提升信号波特率。通过提升单信号的波特率,来实现整体传输速率的提升。我们通过四路子载波的方式,通过每载波100G的传输方式,可以实现400G传输。通过提升28/32GBaud至56/64GBaud,双载波可以实现400G传输。单个载波波特率提高到100GBaud,即可以实现400G的传输系统。
2015年6月,中兴通讯与OFS共同发布了最新的400G超长距高速传输结果,中兴通讯将128.8-GBaud的400Gb/s波分复用(WDM)QPSK信号成功传输超过10130公里,刷新了业界记录,这个结果再次为全球光网络行业设立了新的基准。本次测试基于TeraWave光纤,这种光纤的特点是具有最优有效面积和低损耗;由此,新型光纤的采用也是改进超100G传输系统的有效手段。
第三,采用多载波技术。在超100G系统中,引入了一个新的概念超通道(super channel),通过载波聚合,实现更高传输容量的系统。当前主流的400G传输系统主要有三种实现方式:四载波的100G、双载波的200G(每载波)和单载波的400G。其中四载波的100G PDM-QPSK方式技术成熟,成本低,跨距长,但相对于100G传输系统并无明显的实质提升。双载波(PDM-16AQM)方式可以提升频谱传输效率 165%以上,且技术比较成熟,传输距离较远。单载波400G方式频谱效率最高,其技术实现难度大,传输距离受限,成本高,是超100G系统研究持续努力实现的方向。
第四,采用更先进的数字信号处理及芯片技术。通过相干接收,能够实现更高的信号接收灵敏度,实现更远的传输距离。相干接收是实现100G传输系统的关键性技术。
在超100G光传输系统中,面临着一系列的器件约束和链路的线性及非线性信号损伤限制。通过先进的数字信号处理是解决以上问题的必要手段。比如通过数字信号处理,进行信号损伤的均衡与补偿,其包括色散补偿,时钟恢复,信道均衡,载波频率估计和相位恢复等关键算法。
第五,采用灵活的栅格。出于提高频谱利用率的目的,新一代波分系统普遍支持37.5GHz-400GHz的频谱间隔调节范围,调节步长为12.5GHz,满足400G多载波频谱间隔不定的需求,避免造成过多的频谱碎片,浪费频谱资源。 |